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Abstract

Neural network surrogate models provide a way to accelerate evaluations of computationally
expensive reference functions. Sobolev training can improve surrogate accuracy by supervising
derivatives with respect to the inputs, but full second- and higher-order supervision is imprac-
tical in high dimensions due to the quadratic (and worse) scaling of Hessians and higher-order
derivative tensors. We combine randomized low-rank approximation with algorithmic differ-
entiation to estimate the dominant low-dimensional subspaces of the Hessian and third-order
derivatives, enabling directional supervision without materializing these objects. We propose
batch-wise and streaming methods for direction selection and adapt a task-uncertainty-based
loss balancing mechanism to stabilize training. Across analytic and Monte Carlo reference
functions, our methods improve accuracy over random-direction baselines and reduce train-
ing cost compared to training with full higher-order derivatives, while remaining robust when
derivative information is noisy.
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]_ Introduction

Fast and accurate evaluation of computationally expensive functions is important in many
areas of science and engineering. Examples include physics simulations that solve partial
differential equations on fine grids or Monte Carlo (MC) approximations of stochastic mod-
els. Repeated evaluations can become prohibitively expensive, motivating the construction
of surrogate models that approximate reference functions at lower computational cost while
maintaining high accuracy.

Neural networks (NN) are natural candidates for such surrogates. In standard supervised
learning they are trained by supervising only function values. In the case of surrogate train-
ing, however, derivatives of both the reference model and the surrogate are often available
efficiently via Algorithmic Differentiation (AD). Sobolev training, introduced by Czarnecki et
al. [6], makes full use of that available information by supervising values and their deriva-
tives with respect to the inputs. They demonstrated that incorporating gradients in the loss
can improve sample efficiency and the accuracies of predicted values and learned sensitivities,
which are of primary interest in applications such as financial risk management.

However, extending the idea to second derivatives poses practical challenges because Hessians
scale quadratically with the input dimension. Recent work [19] therefore considers directional
second-order training, supervising curvature only along a few directions via Hessian-vector
products (HVPs). The difficulty lies in selecting a small number of informative supervision
directions that maximize the information provided to the surrogate.

Supervising all coordinate directions is too expensive, while selecting directions at random
ignores the structure of the underlying Hessian. To the best of our knowledge, [19] is the only
work that studies second-order directional Sobolev training for NNs, selecting directions via
principal components of gradients as a proxy for curvature. Their evaluations of second-order
supervision focus primarily on MC approximations of the Bachelier model, reporting limited
success on the Heston model due to high levels of noise in the second-order derivative labels.
Since the Bachelier model has only a single dominant curvature direction at any point, it
remains unclear how well these methods extend to reference functions with richer curvature.
In this work, we explore techniques from Randomized Numerical Linear Algebra (RandNLA).
Randomized sketching methods are used to approximate the low rank structure of large matri-
ces. Combined with HVP evaluations via AD, this allows us to approximate leading curvature
directions efficiently, without materializing full Hessians. We further extend the approach to
directional third-order information.

Contributions:
e We propose three algorithms to select informative supervision directions: a batch-wise
second-order method, a streaming version that aggregates curvature information across
batches, and a third-order extension.

e We provide empirical evaluations against value-based training, first-order Sobolev train-
ing, full Hessian second-order supervision, random-direction second-order training, and
the PCA of gradients approach proposed in [19]. Experiments are conducted using both
analytic and MC approximated labels.

e We adapt a task-uncertainty based loss balancing mechanism and show improved sta-
bility for higher-order Sobolev training, especially under noisy derivative labels.

e We provide a Python/JAX framework for training NN surrogates on custom analytic or
stochastic reference functions supporting all training methods discussed in this work.
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Across a range of reference functions, our methods achieve accuracies close to training with
full Hessians. They outperform curvature supervision of random directions in accuracy, while
remaining more efficient than supervising all coordinate directions for computationally ex-
pensive and high-dimensional reference functions. In Monte Carlo based experiments we
observe that the quality of derivative labels is crucial, especially for third-order supervision.
When sampling noise is too high, higher-order supervision can degrade overall performance.
In these scenarios, the proposed balancing mechanism adapts by downweighting the noisier
components, mitigating adverse effects.

The remainder of this thesis is structured as follows. Chapter 2 reviews the foundations on
Sobolev training and RandNLA needed for the proposed methods. Chapter 3 introduces di-
rectional Sobolev training in detail and presents our direction-selection approaches for higher-
order supervision. Chapter 4 reports the evaluation setup and discusses the results before a
conclusion is given in Chapter 5. Additional materials are collected in the Appendix A, includ-
ing the reference models used in our evaluations A.5, the proposed loss-balancing mechanism
A .4, and supplementary background on NNs A.1 and AD A.2.



2 Background

2.1 Sobolev Training

In standard supervised regression, a target function f : R? — R is approximated by a
parametrized predictor fy (often a neural network) by minimizing the empirical risk over
a given set of input-output pairs { (@, yi)}i-;:

mein % i;ﬁ (fe () ,yi) ;

where the loss function £ quantifies the discrepancy between the network’s prediction and
the target. A standard choice for the loss function is the squared error ||§ — y||3. The
minimization is typically realized through iterative updates to the model’s parameters 6 via
stochastic gradient descent. For a more detailed look at neural networks and their training
procedures, we refer the reader to section A.1 of the appendix.

Sobolev training departs from this value-only supervision by also aligning the derivatives of f,g
with those of the reference function f. By doing so, each sample constrains not just a pointwise
value but also local function behavior. The Sobolev loss, first introduced by Czarnecki et al.
[6], aims to minimize the error of predicted values and learned derivatives up to a chosen
order.

Definition 1 (Sobolev Loss) Let f : R? — R be a reference function and fg a predictor.
The Sobolev loss up to order n at an input x is defined as

Vi) - Vs @] 2.1)

ESobolev(e; IL‘) = Z Az
1=0

where Vi, denotes the i-th derivative with respect to x (with Vg := g), \; > 0 are balancing
factors.

Balancing multiple loss terms of different orders is a non-trivial problem itself. We refer
the reader to section A.4 of the appendix for an explanation of our approach. Czarnecki et
al. demonstrated the idea on analytic reference functions and in model distillation, where
a small neural network learns to approximate the function of a larger pretrained one. In
quantitative finance, Huge and Savine [14] applied the same principle to stochastic pricing
models under the name Differential Machine Learning. While both studies were limited to
first-order supervision, they showed that incorporating derivative information in the loss can
improve sample efficiency and generalization.
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2.2 Randomized Numerical Linear Algebra

This chapter introduces the main ideas of Randomized Numerical Linear Algebra (RandNLA).
Randomized methods extract the low-rank structure of large matrices to compute approximate
solutions faster than deterministic algorithms. A key advantage of RandNLA is the control
it offers over computational cost and approximation accuracy. This makes it well suited for
applications in NN training, where exact solutions are not necessarily needed since training
itself is an approximation process.

Sketching:

A sketch of a matrix A is a smaller matrix that preserves properties of A that are relevant for
a downstream task. It is formed through the multiplication of A with a test matrix S [26].

Definition 2 (Matrix Sketch) Let A € R™*". Then
Y =AS withS eR"™* s<n

forms a right sketch that compresses columns and is useful for estimating left singular vectors.
Stmilarly,
Y =8A withSeR>*, s<m

forms a left sketch that compresses rows and is useful for estimating right singular vectors.

Typical choices for S include i.i.d. Gaussian or Rademacher matrices, in which case sketching
can be interpreted as a randomized projection of A onto a lower-dimensional subspace. The
sketch size s is often chosen slightly larger than the desired rank k of the sketch, with s = k+p
where p > 0 is an oversampling parameter [10].

Low-Rank Approximation:

The range of a matrix A € R™*" is the subspace Range(A) = {Az : x € R"} C R™,
i.e., the span of its columns. The rank of A is the dimension of this subspace, rank(A) =
dim(Range(A)) or equivalently, the number of linearly independent columns (or rows). If
rank(A) is smaller than m or n, then a close approximation of A can be stored more compactly.

Given A € R™*" the rank-k approximation problem is to find a matrix A with rank </~1> <k

that minimizes the approximation error in a given norm

A, € argmin [|A — A].
rank(A)<k

The Eckart-Young theorem [8] shows that for the Frobenius norm || || and the spectral norm
|| - |2, the optimal solution is given by a truncated Singular Value Decomposition (SVD)

Aj, = UpSiVy,
where X, contains the k largest singular values and Uy, Vi, the corresponding singular vectors.

Randomized methods aim to find a solution close to this optimum while being cheaper to
compute. The main idea is the randomized range finder [10].
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Algorithm 1 Randomized range finder for low-rank approximation ( Halko et al. [10])

Require: A € R™*"™ target rank k, oversampling p, power steps ¢

Set s+ k+p

Draw a random test matrix 2 € R"*5 (e.g., i.i.d. Gaussian)

Form the sketch YV < (AAT)7AQ € R™**

Compute an orthonormal basis ) for the range of Y via QR-decomposition: ¥ = QR
Form the compressed matrix B «+ QTA € Rs*"

Return A « QB

Then A = QQT A is low rank approximation of A with rank(;l) < s. It can be beneficial to
apply a few steps of power-iteration when the singular values of A decay slowly. A few steps,
e.g. ¢ =1 or ¢ =2, can already lead to improved approximation accuracy [10]. When using
power-iteration, it is recommended to re-orthonormalize between steps to maintain numerical
stability. Having obtained the compressed representation B, one can perform downstream
computations on it and lift the results back by multiplication with ). The results are ap-
proximations of having done the same computations on the larger matrix A, restricted to
the subspace Range(Q). In section 3.2 we will cover the singular value decomposition as a
relevant example for such downstream operations.

2.3 Literature Survey

Sobolev training was introduced by Czarnecki et al. in 2017 [6], who demonstrated that
supervising first derivatives can improve sample efficiency and accuracy. In computational
finance, Huge and Savine formulated the same principle under the name Differential Machine
Learning (DML), training NN surrogates on MC simulated pricing functions with pathwise
derivatives [14]. Cocola and Hand [4] provided theoretical guarantees for directional first-
order Sobolev training, establishing that directional supervision can suffice to constrain the
target function. Extending DML to second order, Kichler [19] supervised directional curvature
via HVPs, selecting supervision directions via a Principle Component Analysis (PCA) of
gradients. The efficient HVP computations follow Pearlmutter [30], and the underlying AD
framework is detailed in [9] and [27].

RandNLA provides algorithms to approximate dominant low-rank structure in large matrices.
Halko et al. [10] introduced the Randomized SVD algorithm, with broader analysis and survey
of sketching methods by Martinsson and Tropp [25] and Woodruff [35].

A practical concern for Sobolev training is the balancing of loss terms of different orders. Huge
and Savine proposed a normalization per number of supervised quantities, which was adapted
by Kichler for second-order training. Kilicsoy et al. [22] propose residual weighting schemes for
Sobolev training in mechanics applications. Kendall et al. [17]| introduced uncertainty-based
adaptive weighting for multi-task learning in computer vision, which we adopt for higher-order
Sobolev training in this work.

Adjacent work includes Jacobian matching as input-noise regularization in model distillation
[32] and derivative-informed operator learning for partial differential equations [29].






3 Higher-Order Supervision

Sobolev training with first-order derivatives has been shown to improve sample efficiency and
generalization in settings such as quantitative finance and model distillation [14, 6]. Extensions
to higher orders, however, pose computational challenges [11, 19]. Already at second-order,
matching full Hessians is infeasible for functions with many inputs. In this chapter, we present
techniques that leverage directional derivative information to enable higher-order supervision
without explicitly forming full Hessians. We further extend the approach to incorporate
directional third-order derivatives.

3.1 Directional Sobolev Training

For a scalar valued function f(x) with input z € R?, its Hessian at z is the matrix of second-
order partial derivatives

Hy(z) = V2f(z) € R™,

Computing and storing this object costs on the order of d? per sample. Comparing a full Hes-
sian at every training input would therefore require quadratic memory and repeated heavy
computations. This is prohibitive for large input dimensions. However, in many problems the
curvature is not equally strong in all directions of the input space. Often, a small number of
directions correspond to large eigenvalues and therefore capture most of the dominant curva-
ture, while the remaining directions are comparatively flat. As an example, Figure A.24 in the
appendix shows the rapidly decaying eigenspectrum of the mean Hessian of the Heston model
(see A.5 for details). This low rank structure suggests that for practical applications it may
not be necessary to supervise the entire Hessian as described by the standard formulation of
Sobolev training in Definition 1. Instead, it may be sufficient to restrict curvature supervision
to only a small set of carefully chosen directions [4, 19].

Definition 3 (Directional 2nd-Order Sobolev Loss) Let f : R? — R be a reference
function and fg a predictor. For a chosen set of input directions uy, . .., u; € R%, the weighted
second-order directional Sobolev loss at an input x is

2

k
Lo(0:) = AQ% S |, @ — Hy oy (3.1)
i=1

.

The directional second-order Sobolev loss can be calculated efficiently in practice, because it
is possible to compute H i (x)u; and Hy(x)u; without forming the full Hessians.

The Hessian-Vector Product (HVP) corresponds to the directional second-order derivative of
a function f : R¢ — R at a point z in a direction u € R :

Hy(z)u = Vif(x)u

Pearlmutter [30] showed that HVPs can be computed at the same asymptotic cost as eval-
uating the gradient of the function by first computing the gradient V,f(x) and then the
directional derivative of that gradient:

Hf(iL‘)u = 0Oy (fo(x)) :

These calculations can be performed efficiently via Algorithmic Differentiation (AD), a topic
covered in more detail in Appendix A.2. For functions with many inputs and few outputs,
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the HVP can be most efficiently realized as a Jacobian-Vector-Product of a Vector-Jacobian-
Product, or in AD terms, a forward- over reverse-mode computation. Directional higher-order
derivatives can be obtained in a similar manner by applying another forward-mode differen-
tiation to the HVP.

The directional Sobolev loss therefore makes higher-order supervision computationally feasible
by reducing the memory requirement from O(d?) to O(d-k) and the compute requirement from
forming a dense matrix to evaluating only k& matrix-vector products. It also shifts the core
question to which directions we should supervise. Existing literature on directional curvature
supervision is limited. Random direction probing provides an unbiased estimate of curvature
and has been explored in the context of curvature estimation and optimization [24]. It is
conceptually comparable to the Hutchinson estimator for approximating the trace of a matrix
[15]. Kichler [19] introduced a gradient-based direction selection for second-order Sobolev
training. They compute a PCA on the gradients w.r.t. the inputs in a given batch and use
the directions of maximal variance as supervision directions for curvature. Our work builds
on this line of research by using low-rank approximation techniques from RandNLA for better
informed direction selection.

3.2 Batch-wise Randomized SVD

Using techniques from RandNLA (section 2.2), it is possible to approximate the singular
spectrum of a large matrix without computing its Singular Value Decomposition (SVD). The
RandSVD algorithm by Halko et al. [10] combines a randomized range finder with a small
deterministic SVD to compute approximate singular vectors and values of a given matrix
A € R™*™, The range finder isolates the dominant subspace of A and forms the compressed
representation B € R**™ with s < m. The final SVD is then carried out on the reduced
matrix instead of the full m x n matrix.

Algorithm 2 RandSVD [10]

Require: A € R™*"™ target rank k, oversampling p, power steps ¢

Set s« k+p

Draw a random test matrix 2 € R"**® (e.g., i.i.d. Gaussian)

Form the sketch Y < (AAT)7AQ € R™*$

Compute an orthonormal basis ) for the range of Y via QR-decomposition: ¥ = QR
Form the compressed matrix B + QTA € Rsxn

Compute the thin SVD of B: B = UEVTN

Lift U back to the original space: U = QU

Truncate to the top & components: Uy, X, Vi

return (U, X, Vi)

Theoretical results show that with moderate oversampling, the approximation error is close
to optimal with high probability, and the quality improves further with a small number of
power iterations (q=1, q=2) [10].

We adapt this idea to compute curvature-aware supervision directions for second-order Sobolev
training. The matrix we are interested in is the Hessian of the reference model. For a given



3.2. BATCH-WISE RANDOMIZED SVD 9

batch of inputs B = {x3};" |, we aim to approximate the dominant curvature directions of the
batch-averaged Hessian

_ 1 &
Hf=—>"V2
f mb:1vxf(xb)

Intuitively, H # captures the typical curvature structure of the reference model over the current
batch. By taking HVPs computed via AD, we construct a matrix-free version of the RandSVD
algorithm applied to Hy:

1. In Step 3, where the standard algorithm would multiply H ¢ by a test matrix {2 to form
the sketch Y = H 782, we instead build ¥V € R*$ by evaluating HVPs into random
probe directions. That is Y = L S [H (zp) wi, ..., Hy (zp) ws], where the w; are the
columns of 2.

2. Likewise, in Step 5, where the standard algorithm would project H ¢ into the computed
subspace by forming B = QT H f, we construct that product row by row. For each
column ¢; of Q we compute H +q; by averaging HVPs Hy(xp)q; over the batch and
use (ﬁ fqi)—r as the i-th row of B. This is valid in our setting because the Hessians
are symmetric and therefore Q" H(xp) = (Hy(2p)' Q)" = (Hs(25)Q)". Stacking the
transposed HVPs row-wise yields the desired matrix B € R$*.

At the end we truncate to the top k < s directions. Optionally, we keep only as many
singular directions as are needed to explain a prescribed fraction of the curvature variance.
The extracted curvature directions can then be used in the directional second-order Sobolev
loss.

Algorithm 3 Batch-wise RandSVD for dominant curvature directions via HVPs

Require: Function f : R — R (twice differentiable), batch B = {z}}7", target rank k,
oversampling p, power steps ¢
1: Set s« k+p
2: Draw a random test matrix Q € R¥* (e.g., i.i.d. Gaussian)
3: Sketch with HVPs:

1 m
— Z Hy () Q  (columns of © supplied to HVPs)

m
b=1

Y € R¥S

4: (optional power iteration) repeat q times: Y «+ = 3" Hy(x,)Y via HVPs
5: Orthonormal basis Q € R4** for the range of Y via QR-decomposition: ¥ = QR
6: Compressed operator with HVPs:
m
1 .
— Z Hy(zp) Q (columns of @ supplied to HVPs)

m
b=1

BT e R¥s

7. Compute the thin SVD of B: B=UX VT with U € R**¢
8: Lift U back to the original space: U = Qﬁ, with U € R
9: Truncate to the top-k components: U, € R¥*F

10: return Uy

The recovered supervision directions directly reflect the dominant second-order structure itself,
rather than inferring it from gradient variability as done in the PCA-of-gradients approach
in [19]. A tradeoff is that when constructing Hy, we obtain directions that describe the
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typical curvature structure of that batch, not necessarily the curvature at each individual
point. If curvature changes sharply across the batch, then this averaging can smooth out
local variability to the extent of the batch size. Computing a separate set of supervision
directions for each individual input x; was considered but did not turn out to be efficient. For
reference functions where the Hessians do not vary a lot over the inputs, it is possible to use the
information extracted from one batch to inform the approximations of all following batches.
In the Appendix A.3 we include a streaming version, where instead of re-approximating the
curvature subspace from scratch for every batch, we approximate the population operator
E.[Hf(z)] over all available training data and refine a single basis @ € R¥*" over the course
of training.

3.3 Extension to 3rd Derivatives

We extend the second-order batch-wise RandSVD method to the third derivative tensor. The
objective remains the same and is to find a small set of directions along which third-order
effects are strong and therefore most useful for supervision.

Let f:R% — R be three times continuously differentiable. Its third derivative at a point x is
the symmetric 3-tensor
Ty(x) = Vi f(x) € R

We avoid materializing Tr(x) but have access to third-order tensor-vector-vector products
(TVVPs) via algorithmic differentiation. In contrast to the HVP, which maps a point = and
a direction v to the vector Hy(x)v € R?, the third-order version takes two input directions
v,w € R? and returns the slice

Ty(z; -, 0,w) = Ou(Hp(z)v) € RY,
which can be interpreted as the directional derivative of the Hessian action Hy(x)v along w.

Definition 4 (Directional 3rd-Order Sobolev Loss) Let f : R? — R be a reference
function and fg a predictor. For a chosen set of input directions uy, . .., u; € R%, the weighted
third-order directional Sobolev loss at an input x is

k kK
1 2
L3(0;z) = Agﬁ Z Z HTfF) (@5, ui,ug) — Ty (5, ui,uj)HQ ) (3.2)
i=1 j=1
where we contract both modes along the same set of directions.

To find suitable supervision directions given batch of inputs B = {x3}}", we are interested
in the batch-averaged operator

We represent T¢(x) by its mode-one unfolding, which encodes all TVVPs as matrix-vector
multiplications:

(1) dxd? . (1) _ .
Ty (z) € R™Y,  with [Tf (x)L,(j—l)d-Hc =T¢(x)i )k
Then with z defined as the Kronecker product of a given pair v, w € R%:

T}l)(x)z =T¢(x;-,v,w), z=vec(v@w) € ]R{dQ,
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meaning, the third-order TVVP that returns T¢(x;-,v,w) corresponds exactly to applying

the matrix T}l)(x) to rank one vectors of the form vec(v ® w). The mode-one unfolding is

only a reindexing of values and no information is lost when passing from T (z) to T}l) (x).
By a generalization of Clairaut’s and Schwarz’s theorem the order of differentiation does not
matter and unfoldings along different modes are equivalent up to permutation [23|. Direct
construction of the individual T’ }1)(%) is of course infeasible. Instead, we approximate the
dominant left singular subspace of

1~ )
=—> T; (@)
b=1

using a randomized sketch that operates only through TVVPs computable efficiently via AD.
We choose a collection of s sketch directions {u;};_, C R? and evaluate

Ypij = Tr (2p; -, ui, uj) € RY

for each training input z; and pair (¢, ) via AD. The sketch directions may be chosen entirely
at random, or (as in our evaluations) consist of the dominant second-order directions, enriched
with a few random vectors. This way exploration of third-order structure is guided by known
second-order information. Using the same set of sketch directions for both contracted slots of
Ty(xp) respects its symmetry and still allows to probe both diagonal contractions and mixed
interactions. Stacking all index pairs and averaging across the batch produces the sketch

1 m
Y eR>® Yy = - ST (@),
b=1

where the columns of Q € R¥*5" are the Kronecker products vec (u; ® uj). The use of all
pairs (u;,u;) produces a richer sketch than using only diagonal pairs (u;,u;), as mixed pairs
capture interactions between sketching directions. The increased number of probes s? remains
acceptable when s is much smaller than d.

As in the second-order case, we then compute an orthonormal basis @ = orth(Y). The
columns of @) € Raxs” provide candidate supervision directions, but we need to select the top
k < s? directions. In the second-order setting we formed B = Q" H ¢ and obtained an ordering
through its singular values. In that case it is possible to form B by evaluating HVPs, because
the individual H(zp) are symmetric and QT Hy(zp) = (Hs(25)Q)". In the third-order case,
however, the T }1) (xp) are not symmetric and we do not have access to their transposed versions

via AD. Instead, we rank each candidate direction ¢; by the average squared magnitude of its
contracted third derivative,

1 m
)= DTy (s 0i, 003 -
b=1

This quantity serves as a proxy for the strength of third-order effects along ¢; and requires
only TVVPs. We then select the k directions with the largest values of M (g;) and assemble
them as

U =lui,... u € R,

The resulting supervision directions arise from a third-order analogue of the second-order
randomized range finder. They approximate the leading left singular subspace of the mode-
one unfolding of the third derivative tensor. The methodology is extendable to mode-one
unfoldings of fourth- and higher-order derivatives. A concise overview of the algorithm is
given in Appendix A.3.3.
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3.4 Full Training Pipeline

We consider a scalar reference function f : R — R and a surrogate neural network f@. We su-
pervise values, full first-order derivatives, and directional second- and third-order derivatives.
Each training step draws a batch of samples B = {x3},~; and computes targets for values
and first-order derivatives. For second- and third-order supervision, small sets of informative
supervision directions are selected using one of the proposed procedures.

Definition 5 (Combined Directional Sobolev Loss) For a given batch B = {xp},",, let

{ui}fiﬁd,{vj}?irf C RY be the selected second- and third-order supervision directions. The

combined directional Sobolev loss is

1 m
E Z Etotal(e; wb):
b=1

Liotal(0; 1) = MoLo(0; ) + M L1(0;2p) + XaLo(8; xp) + A3L3(6; 2p) + i,

where \; are learned balancing factors and cy is a regularization term preventing A\; — 0.
The per-order contributions are

~ 2
Lo(0:23) = | fo (ws) = f ()|

~ 2
£1(0:2) = |V fo (@) = Ve f (1)
k2nd 2
Lo(b:) = - > || H () i — Hy ) ]
ne =1
1 kSrd k3rd 2
La(0:3) = 5= > > [T, (@i, vi,05) = Ty (i visy)|
3rd =1 j=1

if supervision up to that order is active, otherwise zero.

Balancing the loss terms:

Because the loss terms of different orders can differ significantly in scale and learnability, the
weights Ag to A3 must be chosen carefully. We propose a balancing consisting of base-weights
as in [14] and [19], and combine it with learnable reweighting to account for differences in
learnability and noise. The proposed mechanism is described in detail in Appendix A.4.

Normalization:
For stable optimization, input samples z € R% and targets y = f () € R are mapped to
normalized variables

~ Lj — Hz,j Y—Hy

I] - - ) Yy = ’
Ox,j Oy

using per-dimension means ji, ; and standard deviations o, ;, and output scale o,. By the
chain rule, first-, second-, and third-order derivatives transform as

Yy _ Ux,j@ 623] _ O0z,j0x,k 62?/
0z oy Ox;’  0%;0% oy Oxj0xy’
83@ _ O02,j0x,k0x a3y
8@85%8@ Oy al'jal'kal‘g'

Working in normalized coordinates keeps all supervised quantities in similar numeric ranges
and makes the loss terms more comparable.



4 Results

In this section we evaluate the effectiveness of the proposed methods for NN surrogate train-
ing. Our evaluation proceeds in two stages. We begin with an analytic benchmark setting
in which noise-free training labels are available via AD of analytic reference functions. This
setting isolates the behavior of the proposed methods without interference from noisy training
labels. Afterwards, to highlight how noisy training labels can impact the optimization proce-
dure, we evaluate under Monte Carlo approximations of the Bachelier model A.5, following
the setups of Kichler [19] and Huge [14]. In this setting, derivative labels are obtained via
pathwise differentiation. Evaluations on the test set are performed against analytic labels to
ensure clean and consistent measurements.

Training Setup:

All experiments use the same surrogate architecture and fixed hyperparameters to ensure
comparability across methods. The surrogate is a MLP (see A.1) with four hidden layers,
width 20, and silu activation functions. We use the Adam optimizer with constant learning
rate 1073, The training regime is designed to reflect limited data availability. We use an
online sampling setup with 64 batches of size 128 per epoch. The batch-keys are repeated
across epochs, effectively simulating a finite dataset while maintaining the convenience of
online sampling.

4.1 Analytic Regime

First, we evaluate all methods on an analytic implementation of the Bachelier basket call
option. For consistency with prior studies [19, 14] we use a basket of size 7, with model-
parameters as specified at the end of section A.5. Because the reference function has only
one dominant curvature direction, we use k£ = 1 supervision directions for all second- and
third-order methods. For the batch-wise RandSVD method, we use oversampling parameter
p = 1 and no power-iteration. Adding power-iteration did not impact the results. For the
streaming variant we use a global sketch size of r = 2.

Figure 4.1 shows the test-set Root Mean Square Errors (RMSEs) of all methods over 100
epochs of training. The error curves are averaged over 10 random seeds and the standard
deviations are shown by shaded areas around the curves. The upper-left panel (a) shows
errors in the value- (price-) predictions of the surrogate, (b) shows errors in its learned first
derivatives (Deltas), (c¢) shows errors in the second derivatives (Gammas), and (d) shows
errors in the third derivatives (Speeds). Including first derivatives in the supervision already
leads to significant improvements in accuracy across all orders. Including second derivatives
leads to marginally higher accuracies in the learned first-, second- and third derivatives. Both
proposed second-order methods converge faster than using random directions for supervision
and are equally accurate to the PCA of gradients approach. The error curves of these three
methods lie on top of each other and only the top (brown) curve of the streaming method
is visible. It must be noted, however, that the improvement in sample-efficiency compared
to supervising random directions, does not necessarily translate to improved wall-clock-time
of the training procedure, as there is an overhead involved in finding the more informative
supervision directions. For the batch-wise RandSVD method, the overhead is an additional
(k+p)(g+2) HVPs (per element in the batch) plus some matrix factorizations. Whether this
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Figure 4.1: Test-set RMSEs over training batches for the analytic Bachelier basket call (basket size
7). Curves show mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels
show errors in the predicted values and the learned derivatives.

overhead is worthwhile depends on the chosen parameters k, p, ¢, as well as the dimensionality
and computational complexity of the reference function. In our observations, the overhead
is typically not worthwhile for cheap, analytic reference functions but becomes beneficial for
computationally expensive, high dimensional ones, as will be shown in the following section
4.2. For this experiment, the mean per-batch execution times on our system are given by: 2.1
ms for supervising random directions, 2.4 ms for the batch-wise RandSVD method, 2.5 ms
for the streaming method, 2.3 ms for the PCA of gradients approach, 2.4 ms for full Hessian
supervision and 3.0 ms for third-order directional supervision. Including a third-order term in
supervision leads to improved third-order accuracy. It also becomes apparent that including
higher-order Sobolev loss terms not only increases the final accuracies of the trained surrogate
but also improves sample-efficiency, as fewer samples are required to reach a given accuracy.
As expected, the adaptive loss balancing mechanism had no large effect and the learned
weights remained at their constant base values. An evaluation of the trained surrogates is
included in the appendix (Figure A.4 to Figure A.7).
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Other analytic reference functions:

The observations on the Bachelier model generalize across many analytic reference functions.
With few exceptions, higher-order methods consistently outperform lower-order ones in both
accuracy and sample-efficiency. Detailed results for the Heston pricing model and a range of
analytic benchmark functions are provided in the Appendix A.5. Additionally, we include a
NN as a reference function to illustrate the model distillation setting which Sobolev training
was considered for by Czarnecki et al. [6].

4.2 Monte Carlo Approximated Training Labels

Surrogates are often needed for reference functions that do not admit exact analytic solu-
tions and must instead be approximated through simulation. Therefore, we next evaluate
on a Monte Carlo (MC) approximation of the Bachelier model. The basket size and model
parameters remain unchanged from the analytic experiment. Training labels are obtained via
pathwise differentiation of single simulation paths following Kichler [19] and Huge [14]. As in
their work, we begin with each training-label corresponding to only one simulation path. The
averaging over many MC paths happens over the period of training. To be able to train with
pathwise derivatives, it is required to smooth the kink in the non-differentiable payoff func-
tion. We do so via a three-times continuously differentiable polynomial bridge with ¢ = 0.1
as described in A.5.

Figure 4.2 shows the test-set RMSEs of the surrogates over 100 epochs of training. Including
first- and second-order loss terms leads to improved accuracies. Both proposed second-order
methods outperform random directions and perform on par with the PCA of gradients ap-
proach. These results are consistent with the findings of Kichler [19].

Including third derivatives in this Monte Carlo setting shows a new phenomenon. The third-
order loss term harms the convergence of all other terms. Figure A.23 in the appendix shows
that higher-order targets become increasingly noisy. The labels for third derivatives (Speeds)
contain very little usable signal, and attempting to fit this noise degrades performance. The
uncertainty-aware balancing mechanism detects this and down-weights the third-order term
as shown in Figure 4.3. Without this mechanism, continued training with static base-weights
results in significantly worse final performances (full error curves given in the appendix Fig-
ure A.1):

value error: +0.0265 (+250%)

Ist-order error: +0.0165 (+242%)

2nd-order error: +0.0140 (+232%)

3rd-order error: +0.0156 (+231%)

Down-weighting the third-order loss term improves accuracy even in the learned third deriva-
tives. The surrogate is able to infer the correct structure through the value-, first- and
second-order supervision.

To improve the signal-to-noise ratio in higher-order labels, one can average over many more
paths. Figure A.22 in the appendix shows how the labels become less noisy when averaging
over 1000 paths for each input sample. When training labels are averaged over many MC
estimates, the loss curves become similar to the analytic setting (Figure A.2) and the learned
weights remain close to the base-weights (Figure A.3).
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Figure 4.2: Test-set RMSEs over training batches for the Monte Carlo simulated Bachelier basket call
(basket size 7) with pathwise derivative labels. Curves show mean RMSE across 10 random seeds with
shaded +1 standard deviations. Panels show errors in the predicted values and the learned derivatives.

= = e
IS = o
s L s

normalized loss weights

bt
o
N

0.0 T T
0 1000

— X

base
Ag

QdUO

SdUO 4d00

batch
—\

base
Al

—
Mase

50‘00 60'00

—

base
Aj

Figure 4.3: Normalized loss weights over training for the Monte Carlo simulated Bachelier basket call
(basket size 7) with pathwise derivative labels.
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However, increasing the number of MC simulations also increases the computational cost per
batch. For computationally heavy reference functions, the improved scaling behaviors of the
proposed methods become increasingly relevant. The computational overhead of finding a
small set of informative supervision directions becomes less than the cost of supervising all
directions. Figure 4.4 shows the error curves for a 50-dimensional Bachelier basket option
with averaging 1000 MC estimates per training label, plotted against elapsed wall-clock-time.
Each curve is scaled by the average batch execution time for its respective method. In this
setting, the two proposed second-order methods provide the most efficient trade-off across
accuracy and computation, outperforming also the PCA of gradients approach. Third-order
Sobolev training, while encoding more information per sample, is slower per batch, and the
cost-benefit trade-off is not favorable for this specific reference function.
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Figure 4.4: Test-set RMSEs over training time for the Monte Carlo simulated Bachelier basket call
(basket size 50) with derivative labels averaging 1000 paths each. Curves show mean RMSE across
10 random seeds with shaded +1 standard deviations. Panels show errors in the predicted values and
the learned derivatives.






5 Conclusion

This thesis investigated Sobolev training for NN surrogates. While first-order Sobolev train-
ing is established, full supervision of higher-order derivatives becomes computationally pro-
hibitive. The central idea of this work is to replace full higher-order supervision with di-
rectional supervision guided by randomized low-rank approximation techniques. Using only
directional derivative evaluations computed efficiently via AD, we identify low-dimensional
subspaces that capture the dominant higher-order behavior of the reference function. The
supervision of higher-order derivatives can then be focused on a small set of informative
directions, providing a scalable alternative that still captures the essential higher-order be-
havior. Across a variety of reference functions, directional second- and third-order supervi-
sion improves accuracy and sample-efficiency over value-only and first-order supervision. Our
methods outperform random-direction supervision, while remaining more efficient than super-
vising full Hessians for high-dimensional and computationally expensive reference functions.
Our experiments further show that loss balancing is essential for higher-order Sobolev training
due to differences in learnability and noise across loss terms of different orders. Especially un-
der noisy labels, uncertainty-aware adaptive reweighting stabilizes training by down-weighting
unlearnable, noisy loss terms.

Discussion:

The proposed methods are most effective when the reference function exhibits low-rank higher-
order behavior, so that a small subspace captures most of the higher-order signal. In such
cases, RandNLA-based sketches offer a principled way to find informative supervision direc-
tions. Limitations arise when a) the higher-order structure is close to full-rank, as no direc-
tion selection can be better than random, or b) the dominant higher-order behavior changes
strongly across the input space, so that a single global or batch-averaged subspace fails to
capture important local effects. Against our expectations, adding power-iteration steps to the
batch-wise second-order RandSVD direction selection did not improve surrogate accuracy on
any of the reference functions we evaluated.

From a computational perspective, the methods replace the cost of forming full higher-order
derivatives with a controlled number of directional derivative evaluations plus lightweight
factorizations. Whether this overhead is worthwhile depends on the cost of the reference
function and its input dimension. For sufficiently expensive and high-dimensional problems,
the improved scaling leads to tangible efficiency gains.

Future Work:

A first direction is rank adaptivity. The number of supervised directions could be chosen dy-
namically using explained-variance thresholds or through rank-revealing sketching techniques
[16] to detect the effective dimensionality of the higher-order structure online. A second direc-
tion is to better address locality and nonstationarity by learning region-dependent subspaces.
This could be achieved through clustering or mixture-of-experts architectures, allowing differ-
ent sketches to specialize in different regions of the input space. A third direction is adaptive
sampling, using the derivative information accumulated so far to guide where new evaluations
should be taken. Derivative-aware sampling strategies could focus supervision on regions
where it is most informative. Finally, there is room for theoretical analyses that establish
connections between the spectral decay of derivative operators, the sketch quality, and the
resulting gains in sample efficiency during directional Sobolev training.






A Supporting Material

A.1 Neural Networks

Function Approximation and Supervised Learning:

Machine Learning can be understood as the problem of approximating an unknown target
function f : X — Y from a finite set of observations {(z;,y;)};~,. Given these input-output
pairs the task is to learn a parameterized model fg : X — Y that predicts outputs close to
the true mapping f. These models are often implemented by neural networks, which are then
trained to minimize the empirical risk over the available data

D IR
mm - Zﬁ (fe (i) 7yi) .
=1
The empirical risk is designed to approximate the expected risk

Bz y)~p [ﬁ (fe(f'?)ay)] )

over the generating distribution D, which in practice may differ between training and de-
ployment. The loss function £ quantifies the discrepancies between predictions and targets.
Common choices are the mean-squared error for regression tasks and the cross-entropy loss for
classification tasks. In this work we limit ourselves to regression tasks with target functions
f:R* - R.

Neural Network Structure and Expressivity:

Neural Networks (NNs) realize nonlinear mappings through the successive application of linear
transformations and nonlinear activation functions. A feed-forward multilayer perceptron
(MLP) with L layers takes the form

fol@) =Wro (Wi_i1o(...o Wiz +b)...)+br_1) + by

where 6 = {WW, bg}é::l denotes the learnable parameters with W, € R™+1*™ and b, € R™+1,
The nonlinear activation functions o (-) enable the network to approximate nonlinear functions.
For Sobolev training it is essential to use smooth activations, such as the silu function, as they
enable stable computation of derivatives. Piecewise-linear activations like ReLU introduce
non-differentiable kinks, which can lead to discontinuities and Dirac-like spikes. The silu
activation function used in our experiments is given by:

. x
Slhl(.fU) = m

The Universal Approximation Theorem [13] states that even a single hidden layer MLP of
sufficient width can approximate any continuous function on a compact domain arbitrarily
well. The difficulty lies in finding the correct parameterization 6 through optimization. In

practice, deeper architectures are used as they need fewer parameters by reusing intermediate
nonlinearities [21].
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Optimization and Training:

Minimizing the empirical risk over the parameters 6 is achieved through iterative, gradient-
based optimization. Gradients of the empirical risk with respect to the parameters are esti-
mated on small subsets of the training data (batches), and an update step is applied. These
updates to the parameters iteratively tune the model to minimize the empirical risk over the
given data. The update rule for stochastic gradient descent (SGD) is

011 = 0: — nVoLp (6;)

where 7 is the learning rate and EB is the loss computed over a batch B. Small random
subsets of the data are used for each update iteration because computing gradients on the
entire dataset is often limited by available memory. Furthermore, empirical evidence shows
that the noisy gradient estimates of stochastic batches help the optimizer escape sharp minima
in the non-convex loss landscape [18]. Additionally, various refinements such as adaptive
learning-rate schedules or momentum methods (e.g. Adam) can further improve convergence
and stability. Although the loss landscape is highly non-convex, empirical evidence shows that
stochastic gradient descent rarely gets stuck in suboptimal, local minima. Isolated minima are
very rare in high-dimensional parameter spaces, as the optimizer would need to get stuck in all
parameter directions simultaneously. Instead, optimization tends to find broad, low-curvature
regions that correspond to good generalization performance [7].

Regularization and Generalization:

A critical challenge in training NNs is to achieve good performance on unseen inputs. Over-
parametrized networks can easily learn to fit the training data but may fail to generalize
beyond it, a behavior known as overfitting. This motivates the use of regularization tech-
niques which constrain model complexity and promote smoothness.

Regularization can be done implicitly through mechanisms such as dropout or data augmenta-
tion. These techniques reduce overfitting by introducing noise and variability during training.
Regularization can also be introduced explicitly, through penalization of large parameter val-
ues in the loss. Similarly, large derivatives w.r.t. the inputs can be penalized to enforce
smoothness in the learned function. This interpretation directly connects regularization to
Sobolev training, where smoothness is learned explicitly by matching the derivatives of the
target function.



A.2. ALGORITHMIC DIFFERENTIATION 23

A.2 Algorithmic Differentiation

Many of the methods developed in this thesis rely on derivative information. Accurate and
efficient derivative computations are therefore essential. Traditional approaches such as finite
differences (FD) and symbolic differentiation, however, are not practical for our applications.
FD approximates derivatives through repeated function evaluations, which causes computa-
tional cost that scales linearly with the input dimension. Symbolic differentiation expands
analytic expressions, which leads to exponential growth in expression size. Algorithmic Differ-
entiation (AD) provides an efficient alternative. It computes exact derivatives up to machine
precision by systematically applying the chain rule through the computational graph of a
program. This makes it possible to compute gradients and higher order derivatives efficiently
without sacrificing accuracy [27, 9].

Principles of Algorithmic Differentiation:

AD decomposes a program (that represents a function f : R™ — R”, f(x) = y) into a compu-
tational graph of elementary operations with known derivatives. The graph consists of nodes
representing intermediate variables and edges encoding dependencies. Sensitivities are then
propagated through this graph by applying the chain rule. This can be done either front-to-
back or back-to-front, which is why two main modes of AD exist.

In forward mode AD, for a given input direction v € R™, each intermediate variable u; in the
computation of f is associated with its rate of change with respect to v:

duj

'l:b'
7 da:

These derivatives are calculated by executing the program once in the forward direction and
propagating the updates
- 3 g
8uZ

zEp

where g; is an elementary operation, with known derivative, acting on parent variable u; to
impact u;. p(j) denotes the index-set of intermediate variables u; that u; directly depends
on. The result of the run is the output value y of the program and the directional derivative
U = Jy(x)v. Its cost is proportional to one additional evaluation of the program per input
direction, which is why forward mode AD is most efficient when the input dimension m to
the program is smaller than its output dimension n.

In reverse mode AD, each intermediate variable u; is instead associated with the sensitivity
of the output y with respect to that intermediate variable:

a—ay
Z_aui'

First, the program is executed in the forward direction to store the values u; of all intermediate
variables. Afterwards, for a given output direction v € R", a backwards sweep propagates
sensitivities in reverse order: 5

_ 995

=) g

jee(i)
where again g; is an elementary operation, with known derivative, acting on parent variable u;
to impact u;. c¢(i) denotes the index-set of intermediate variables u; that u; directly impacts.
The result of this reverse pass is 7, = v’ J ¢(x), where v is a vector of output sensitivities
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(often v = 1 for scalar outputs). At the expense of the memory cost for storing intermediate
values, its computational cost is relative to the number of elementary operations times the
output dimension n of the computed function. It is therefore most efficient for functions with
m > n. For this reason it is often used in applications involving NNs. A prominent example
is the backpropagation algorithm.

Implementation in JAX:

All computations in this work are implemented using JAX [2], a Python library for efficient ar-
ray computation and algorithmic differentiation. JAX provides direct access to the forward-
and reverse-mode operations introduced before. Together with just-in-time (JIT) compila-
tion, this enables efficient evaluation of gradients and higher-order derivatives on CPU, GPU
and TPU backends. JAX operates within a purely functional subset of Python. To sup-
port this, JAX provides differentiable control-flow constructs such as jax.scan, jax.cond
and jax.whileloop. Additionally, jax.vmap enables vectorization over batches of inputs.
Forward- and reverse-mode differentiation are exposed as jax.jvp and jax.vjp. As an ex-
ample, they can be composed to compute HVPs as follows:

def hvp(f, primals, tangents):
return jax.jvp(lambda x: jax.grad(f)(x), primals, tangents) [1]

Where jax.grad is a wrapper for jax.vjp with output direction 1, convenient for functions
with scalar output.

To be compatible with JAX, NNs are implemented using Equinox [20]. Equinox is a Python
library that extends JAX with a PyTorch-like module system. It represents modules as
PyTrees, which are nested dictionaries of JAX arrays. This allows NN modules to remain
compatible with JAX transformations. Optimization is handled through Optax, which pro-
vides functional implementations of common optimizers such as Adam, ensuring that the
entire training pipeline remains compatible with JAX.
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A.3 Proposed Algorithms

A.3.1 Batch-wise Randomized SVD

The batch-wise RandSVD method for finding supervision directions for second-order Sobolev
training was introduced in section 3.2.

A.3.2 Streaming Refinement

The batch-wise RandSVD method proposed in 3.2 re-computes approximations of the curva-
ture subspace for every batch. For functions that have globally constant dominant curvature
directions, these calculations are redundant. Instead, we propose to approximate the popu-
lation operator E,[H(z)] over the entire training data and refine a single basis Q; € R¥"
with r < d over the course of training. The basis Q)q is initialized with i.i.d. Gaussian values.
For every new batch of inputs B = {x3};", the update of Q; has two components, one for
exploration and one for exploitation:

1) Exploration via random probes:

Similarly to our first method, we use a Gaussian test matrix Q € R**". However, instead
of directly computing the sketch ¥ = % >y Hp(xp)$2, we first deflate 2 against the current
basis Qy:

0= (1-QQl)e.

The orthogonal projector removes directions already captured by @ and focuses exploration
on its complement, which helps to recover eigenvectors that had little overlap with the initial
basis. The exploration part of the sketch update is then formed as:

1 m

lorati
Agip oration __ % Z Hf (xb) QL~
b=1

2) Exploitation via subspace iteration:
The second part performs an online variant of subspace iteration, mirroring the power-iteration
used in RandSVD. The update:

= L ZHf (zp) Qt

Ag{ploltatlon —~
b=1
over iterations, rotates @ toward the dominant invariant subspace of E;[H¢(x)]. The approach
follows Oja’s streaming version of subspace iteration used for example in online PCA, where
repeated multiplication and orthonormalization leads to convergence to the top eigenvectors
of the population operator [28, 31]. This step therefore exploits the structure already captured
in @, gradually sharpening it in the directions of strongest curvature.

Combined update:
Both components are combined, applied to Qs after an orthogonal projection and the resulting
basis is re-orthonormalized:

Ag = (I - QtQtT) [Ag(pbitation + 5Agplorati0n]a Qi1 = orth(BQ: +1nAq).

Here, n € [0.05,0.2] is a small learning rate and & & 0.05 controls the relative weight of explo-
ration. A forgetting factor 5 € [0.98, 1] enables slow adaptation to drifting curvature. This
is relevant for cases where either the sampling distribution changes during training (adaptive



26 APPENDIX A. SUPPORTING MATERIAL

sampling) or the underlying function f itself changes. This may be the case when approxi-
mating not the curvature structure of the reference model but that of the surrogate, which
changes during training.

Direction readout for supervision:
From the updated basis Q:11, k < r supervision directions are extracted in the same way as in
the batch-wise RandSVD method. First, the compressed representation of the batch-averaged

Hessian is formed via HVPs
m

> Hy () Qfyy € R,
b=1

1
B=—
m

then its left singular vectors are computed with a thin SVD B = USVT in the reduced space
with U € R™" and lifted back to input space
U= Qt+1ﬁ S RdXT.

The results are truncated to the top k components U, € R F which are then used as
supervision directions in the directional second-order Sobolev loss.

Algorithm 4 Streaming Refinement for dominant curvature directions via HVPs

Require: Function f : RY — R (twice differentiable), batch B = {z;} ,, sketch size r < d,
target rank k < r, step size n € [0.05,0.2], forgetting factor § € [0.98,1], exploration
weight ¢ ~ 0.05, Gaussian test matrix Q € R?*", current basis Q; € R?*" (initially
Gaussian for t = 0)

1: Orthogonal projection €2, + (I — QtQ;r) Q
2: Exploration update with HVPs:

. 1 &
Agploramon - Z Hy (25) Q1 (columns of 2, supplied to HVPs)
b=1

3: Exploitation update with HVPs:

1 m
— Z Hy (xp) Q¢ (columns of Q; supplied to HVPs)

loitation
Aexp —
Q m
b=1

4: Combine updates:
AQ _ (I . QtQ;I') [A(S(ploitation + EAgcploration]
5: Apply updates and orthonormalize through QR-~decomposition:

Qty1 < orth (8Q: +nAg)

6: Compressed operator with HVPs:

1 m
BT e R « — Z Hy(xp) Qiy1 (columns of Q41 supplied to HVPs)
m
b=1
7: Compute the thin SVD of B: B=UXV " with U € R™"
8: Lift U back to the original space: U = Q;41U, with U € R4*"
9: Truncate to the top k& components: U, € R4*F
10: return Uy
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A.3.3 3rd-Order Extension

The batch-wise method for finding supervision directions for third-order Sobolev training was
introduced in section 3.3. Here we give a concise overview of the proposed algorithm.

Algorithm 5 Batch-wise sketching for dominant directions of the 3rd derivative tensor

Require: Function f : R? — R (three times differentiable), batch of inputs B = {z}}7,
sketch size s < d, target rank k3,4 < s, optionally: dominant curvature directions Uy, , €
RIxk2 of f

1: Form sketch directions € R%*$ by combining Us with s — kg, Gaussian random vectors
2: Sketch by evaluating TVVPs for all pairs of sketch directions via AD

1 m
YGRdXSQ%EZTf(J;b;'aui)uj)a 1§17j§5
b=1

3: Compute an orthonormal basis @ € R¥*s” for the range of Y via QR-decomposition:

Y =QR
4: Rank the columns of @) by

1 m
EZ”TJC Tps 7QZ7Qz)H27 1 Siﬁsz
b=1

5: Assemble the top ks3,q columns as Uy, , € RA*k3ra
6: return Uy, ,
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A.4 Loss Balancing for Higher-Order Sobolev Training

Training NN surrogates with Sobolev supervision requires joint minimization of value, gra-
dient and higher-order loss terms. A central challenge is that these loss terms can differ in
learnability and scale. As a result, a naive sum of losses implicitly prioritizes whichever term
is numerically largest. Higher-order loss terms may vanish or dominate the objective, lead-
ing to unstable or biased training. Earlier approaches attempted to counteract this problem
with manually tuned weights [6] or a heuristic rescaling that downweights derivative terms
whenever a batch error exceeds that of the value term by a fixed factor [11]. We propose a
two-layer weighting scheme, where the first layer consists of weights adapted from Huge [14]
and Kichler [19]. These base-weights account for the number of supervised quantities per term
and can encode user-controlled preferences. The second layer adds a learned task uncertainty
based on the multi-task formulation of Kendall et al. [17], which adapts to differences in
learnability and noise across terms.

Deterministic Base-Weights Through Structural Balancing

Imbalances arise from the differing number of supervised elements in each term. For functions
f:R? = R, a single function value f(z) is supervised, while the gradient has d, the Hessian
d? and the third derivative d> components. Huge et al. [14] proposed a weighting based on
the number of supervised elements:

1
14+ ad’

ad
14+ ad’

base __ base __
Ao AL

where « controls the relative importance of gradient supervision with a default of a = 1.
Kichler [19] extended this idea to second-order supervision by including a normalization based
on the number of supervised curvature directions ko, g.

1 d d?
c=14ad+ Bd?, N*° = o Abase — % Abase — pd

9

with a default value of g = 2]22—2"01, where the factor of two accounts for symmetry in the
Hessian. Extending this principle to third order leads to:

1 d d? d3
c=1 + OédjLﬁdQ +’}/d3, )\Base _ E’ )\lljase _ %, )\123ase — %7 )\lg)ase — ’YT’

2
with a default value v = 6’;33”. The value for ~y arises from supervising ks3,q - k3rq direction
pairs, with a factor of 3-2 = 6 to account for the number of unique combinations in the

symmetric 3-tensor.

This normalization ensures that each loss term contributes proportionally to its number of
supervised quantities. Base-weights alone, however, remain static and cannot adapt when
one task is inherently harder to learn than the others. These differences in learnability can
arise, for example, when training with Monte Carlo based derivative labels. Higher-order
derivatives are noisier than lower-order ones (see Figure A.23) and the optimizer needs to see
many examples to account for the same quality that a single value- or gradient label carries.
The higher-order derivatives should therefore be weighted less. We propose to complement
the base-weights with learned, task-specific weights.
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Task-Uncertainty Weighting

Kendall et al. [17] proposed letting the NN learn per-task noise variances s; = log 012 alongside
the networks parameters:

1
exp (—s;) Li(0;x) + §3i,

N =

3
Etotal(e; 37) - Z
1=0

where the exponential terms are the learned importance weights and the %si are regulariza-
tions preventing s; — 00.

This idea fits well with Sobolev training once the losses have been normalized through the
base-weights /\l?ase as described above. The base-weights implement structural normalization
and reflect coarse user preferences, the learned uncertainties perform data-driven adjustments
in response to difficulty and noise. The full loss becomes:

3
1 1
Liota(0;7) = ZO <2 exp (=si) A Li(0; @) + 2) .
=
When formulated as: ,
Liotal(6;7) = > \iLi(6; ),
i=0
the final weights are
1
i = 3 exp(—s;)Abase,
and a regularization term
3
1
C)\ = ZO 557;
1=

needs to be added, leading to the final formulation in definition 5.

When training with noise-free, analytic derivatives, the losses for different orders decline
at similar rates. The gradients with respect to the log variances s; remain small and the
learned weights stay close to the base-weights. Only in late epochs do small differences
in learnability produce small deviations. Under noisy Monte Carlo based derivative labels,
the situation changes. Especially higher-order losses become noisy and the corresponding
uncertainty parameters s; increase, reducing their effective weights. Forcing the NN to fit
noisy, higher-order derivatives would harm its ability to learn values and gradients. As training
continues and the network averages over more Monte Carlo estimations, the losses approach
those of the analytic regime and the learned weights converge accordingly. Our experiments
show that both mechanisms together form a robust approach to balancing losses for higher-
order Sobolev training.
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A.5 Reference Models and Additional Evaluation Results

A.5.1 Stochastic Option Pricing Models

Two stochastic pricing models from quantitative finance are used as reference functions in our
evaluations. The Bachelier and Heston models describe the probabilistic evolution of asset
prices over time and are used to value financial derivatives such as call options.

European Call Option:
A FEuropean call option gives its holder the right to buy an underlying asset at a future
timepoint T for a fixed price K. Under the risk-neutral measure Q with constant risk-free
interest rate r, the fair price C of a European call option is the discounted value of its expected
payoff

C=e"EY[(Sr - K)"],
where St is the price of the underlying asset at maturity. It is often convenient to work with

the T-forward price F; = S;e" @) and the associated T-forward measure Q7. Note that at
maturity Fr = St. The forward price of the option becomes

wad _ EQT [(FT _ K>+] _ CTTC.

To evaluate the expectation in advance, one must specify how the price of the underlying asset
evolves from Sy to S7. The Bachelier and Heston models provide two stochastic formulations.

The Bachelier Model:
The Bachelier model [1] assumes additive Gaussian dynamics for the forward price:

dF, = odW,Q"

where o is the constant volatility and WtQT is a Wiener process under Q7', that adds stochastic
changes with mean zero. The formulation implies that F7 is normally distributed with mean
F, and variance o27.

Assuming these dynamics, the undiscounted forward price of a European call option can be
obtained through Monte Carlo simulations or be computed analytically as [34]

R -K
oVT '’
where ®(-) and ¢(-) denote the standard normal cumulative distribution function and proba-

bility density function respectively. Similarly, sensitivities (Greeks) can be computed analyt-
ically or via algorithmic differentiation, see |3] for derivations.

OB i (Fo, K, 0,T) = (Fy — K)®(2) + oVT(2), =

As in [19], we consider a basket of m correlated assets to increase the input dimensionality of

the reference function. With normalized weights w € R™ and initial forward prices Fo(i) € R™,
the basket forward price is

m
B =Y wir".
=1

Since in the Bachelier case, each component is normally distributed and jointly correlated,
the basket itself is Gaussian. Consequently, the basket call option can be treated as a single
Bachelier asset with variance determined by the correlations and volatilities of its individual
components. Its price can then be evaluated using the same analytic formula as in the single-
asset case.
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The Bachelier model has only one curvature direction corresponding to the basket weight
vector w. To test higher-order Sobolev training on reference functions with richer curvature
behavior, we include the Heston model in our evaluations.

The Heston Model:
The Heston model [12] replaces the constant volatility o in the Bachelier model with a second
stochastic process. It is defined by the stochastic differential equations

dS; = rSydt + /vy S, dW,”)
dvy = k(0 — vy) dt + 5\/117th(7))
corr (th(S), th(v)) =p

where r is again the risk-free rate, v; represents the stochastic variance with long-run mean
f and mean-reversion rate k. £ is the volatility of volatility and p is the correlation between
price- and variance changes generated by the Wiener processes Wts and WpP.

The Heston model has a semi-closed-form solution for the price of a European call option in
the single asset case [12]:
Chieston (S0, v0) = SoIly — e "T KTIy,

where II; and Ils are probabilities computed through characteristic function integrals. As
stated in [5], given the characteristic function

wHeston ( ) _ e[C(t,w)GJrD(t,w)voJriwln(Soe”)]

In(St)
with: .
2 1—ge™
Ctyw)=a|r_--t——=ln 9¢
&2 l—g
1—e Nt
D(t, w)—r_l_ge_ht
+h
T+ 662 7h_ 52_4(}7
r_
9=—
T+
w?  w . £2
a——?—?,ﬁ—a—p@wﬂ’—?,

the values of Iy and Ily are given by

1 1 [
H1:+/ Re
2 m™Jo

1 1 [
II, = - + / Re
2 m™Jo
Because the integrands decay rapidly, the integrals can be approximated on a finite grid to
obtain a solution to the option price.

e—i-w.-ln(K) . \IllnST (’LU _ l) dw
i-w - Ying, (—1)

e_i.urln(K) . \IjlnST (w)] d’U}

YRR

Since the semi-analytic solution is only defined for a single asset call, we construct a basket-like
extension as a portfolio of individual Heston calls:

Il?lz:lt(gltq ZW’LCHeston ( ()7 (z)>’
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which defines a smooth mapping from the concatenated input vector
o= (50,00, 5,0

to the basket price. Although this is not equivalent to a true call on the weighted sum of

terminal asset prices
m +
i=1

it still provides a smooth and curvature-rich mapping suitable for evaluating higher-order
Sobolev training.

EQ

Implementation:

For our evaluation purposes, both analytic and Monte Carlo implementations are used. The
analytic Bachelier formula provides exact, noise-free labels for prices and derivatives of all
orders, serving as ground truth for test set evaluation. In addition, a Monte Carlo imple-
mentation of the Bachelier model is included to emulate practical scenarios where only noisy,
simulation-based data is available. We follow the pathwise differentiation approach of Huge
[14] and Kichler [19]:

Given a vector of initial prices Féi) and a fixed covariance matrix, we draw independent
standard normal samples and correlate them by multiplication with the Cholesky factor of
the covariance matrix to obtain price changes AW}Z ). Terminal prices are then computed as

Y = B+ awl?,

which corresponds to an Euler-Maruyama discretization of the Bachelier dynamics [19]. The
basket value is formed as By = w' Fr and a smoothed call option payoff is computed as

C(BT,K) %maX(BT—K,O),

where the kink at K is replaced by a smooth polynomial transition. Concretely, we define the
transition polynomial on (—1,1):

ub —B5ut + 1502 1 5

ru) = 32 Tyt Tt ey
and set
0, t < —¢,
C(Br.K)=1er (), [t<e
t, t>e¢

with ¢t := By — K and u := g

Averaging this payoff over many simulated paths yields a Monte Carlo estimate of the option
price. Algorithmic differentiation through the entire computation provides derivatives with
respect to the initial prices. The analytic Bachelier formula continues to serve as the ground
truth for evaluation.

For the Heston model, derivatives are obtained by differentiating the semi-analytic solution
using algorithmic differentiation. In principle, one could mirror the Bachelier construction
and estimate Heston prices and Greeks via Monte Carlo simulation. However, in earlier ex-
periments [19] such an approach led to practical issues for higher-order Sobolev training.
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The approach produced pathwise second derivatives that were effectively zero on most sam-
pled paths. This results in poor training signals for higher-order loss terms. We opt for the
semi-closed-form implementation as a stable alternative. This choice isolates the effect of our
Sobolev training methods from Monte Carlo artifacts and ensures that any observed behavior
is attributable to the loss design, not to degenerate gradient estimates. The parameter choices
for both models follow those used by Kichler [19] to ensure comparability.

Bachelier Parameters:

T=10, K=110, o=0.2

Initial spot prices Fo(i)

are normally distributed around 100.

Heston Parameters:

T'=10, K=100, 6=0.09, p=-03, k=1, §=1, r=0
Initial prices S(()l) are sampled uniformly at random from [50, 150].

Initial volatilities v(()i) are sampled uniformly at random from [0.01,0.1].
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Additional Evaluations under the Bachelier Model:

Complementary to the results described in Chapter 4, we include additional evaluations on
the Bachelier model. Figure 4.2 shows that without the proposed balancing mechanism,
continued training with static base-weights leads to overall higher errors when training under
noisy derivative labels. Figure A.2 and Figure A.3 show that when labels are averaged over
many MC estimates, the loss curves become similar to the analytic setting (Figure 4.1) and
the learned weights remain close to the base-weights.

0.040 0.030
0.035 4
0.025 4
0.030 1 J}
0.020 4
0.025 4
2 2
= 0.020 4 = 0.015
~ ~
0.015 4
0.010
0.010 4
0.005
0.005 4
0.000 T T T T v v T 0.000 T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
batch batch
(a) value error (b) 1st-order error
0.0200 0.0200
0.0175 4 0.0175 4
0.0150 0.0150 4
0.0125 1 : \ 0.0125
i \
2 2
= 0.0100 4 = 0.0100 4
~ ~
0.0075 0.0075 4
0.0050 0.0050 4
0.0025 0.0025 4
0.0000 T T T T T T T 0.0000 T T T T T T T
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
batch batch
(¢) 2nd-order error (d) 3rd-order error
standard value-based — 2nd-order PCA of dy 3rd-order
—— lst-order —— 2nd-order batch-wise randSVD —— 2nd-order full Hessian
—— 2nd-order random directions —— 2nd-order streaming

Figure A.1: Test-set RMSEs over training for the Monte Carlo simulated Bachelier basket call (basket
size 7) with pathwise derivative, using static base-weight balancing. Curves show mean RMSE across
10 random seeds with shaded +1 standard deviations. Panels show errors in the predicted values and
the learned derivatives.
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Figure A.2: Test-set RMSEs over training time for the Monte Carlo simulated Bachelier basket call
(basket size 7) with derivative labels averaging 1000 paths each. Curves show mean RMSE across 10
random seeds with shaded +1 standard deviations. Panels show errors in the predicted values and
the learned derivatives.
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Figure A.3: Normalized loss weights over training for the Monte Carlo simulated Bachelier basket call
(basket size 7) with labels averaging 1000 paths each.
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Figures A.4 to A.7 show that higher-order derivative supervision leads to visually more accu-

rate predictions on the test.

0.25

08 7 020

015

0.10

00l

05

\

0.0 e

—0.05
000 025 050 075 100 125 150 175 200 000 035 050 075 100 125 150 175 200 000 02 050 075 100 135 150 175 200 000 02 050 075 L0012 150 175 200
(a) Prices (b) Deltas (¢) Gammas (d) Speeds

Figure A.4: Value-only supervision. Final predictions on the test set for the analytic Bachelier basket
call (basket size 7). Analytically derived targets are shown in orange. Predictions and learned deriva-
tives of the surrogate are shown in blue.
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Figure A.5: Value- and first derivative supervision. Final predictions on the test set for the analytic
Bachelier basket call (basket size 7). Analytically derived targets are shown in orange. Predictions
and learned derivatives of the surrogate are shown in blue.
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Figure A.6: Up to second-order batch-wise RandSVD supervision. Final predictions on the test set
for the analytic Bachelier basket call (basket size 7). Analytically derived targets are shown in orange.
Predictions and learned derivatives of the surrogate are shown in blue.
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Figure A.7: Up to directional third-order supervision- Final predictions on the test set for the analytic
Bachelier basket call (basket size 7). Analytically derived targets are shown in orange. Predictions
and learned derivatives of the surrogate are shown in blue.
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Evaluations under the Heston Model:

Figure A.8 below, shows the test-set RMSEs of all methods over 100 epochs of training on
the Heston model (basket size 7). The error curves are averaged over ten random seeds and
the standard deviations are shown by shaded areas around the curves. The supervision of
first derivatives already leads to significant improvements in sample-efficiency. Inclusion of
second- and third-order loss terms leads to additional improvements in the accuracies of the
learned derivatives, with similar results for all second-order methods.
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Figure A.8: Test-set RMSEs over training for the semi-analytic Heston basket call (basket size 7).
Curves show mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show
errors in the predicted values and the learned derivatives.
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A.5.2 Analytic Benchmark Functions

This section introduces additional analytic benchmark functions used for our evaluations.
Their closed forms allow exact computation of derivatives of all orders via AD. This makes
them suitable for clean analyses of different Sobolev training methods. For each function, we
present error curves over the course of training. All experiments are carried out in d = 20
dimensions with & = 3 supervision directions, p = 5 oversampling directions, ¢ = 0 power-
iteration steps, and r = 8 streaming sketch directions. Adding power-iteration did not impact
the results. We use a batch size of 128 and 64 batches per epoch.

Rotated Hyper Ellipsoid:

The Rotated Hyper Ellipsoid function is a smooth convex quadratic [33].

d i
Fo =33

i=1 j=1

Figure A.9: Rotated-Hyper-Ellipsoid function (d=2)

Gradients are linear in x, the Hessian is globally constant with linearly decaying eigenvalues,
and all higher derivatives are zero.

Inputs are sampled uniformly at random from [—5,5]. Figure A.10 shows the test-set RMSEs
of all methods over 300 epochs of training (d=20). The error curves are averaged over ten
random seeds and the standard deviations are shown by shaded areas around the curves. It
can be observed that inclusion of the third-order loss term yields almost no benefit in sample-
efficiency, as all third derivatives are zero. All second-order methods, including full Hessian
supervision, perform almost the same. As shown in Figure A.11, the learned balancing factors
start to diverge from their base values after 100 epochs, putting more weight on the second-
and third-order terms. This re-weighting leads to differences in the final test-set RMSEs by:
value error: +0.006477 (+12%)

1st-order error: +0.000122 (+0.76%)

2nd-order error: —0.000939 (—19%)

3rd-order error: —0.000389 (—27%)

compared to continued training with static base-weights.

Figure A.12 shows alternative trajectories for the learned loss weights. It illustrates how for
different starting configurations, the learned weights still converge to the same end values.
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Figure A.10: Test-set RMSEs over training for the analytic Rotated-Hyper-Ellipsoid function (d=20).
Curves show mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show
errors in the predicted values and the learned derivatives.
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Figure A.11: Normalized loss weights over training for the analytic Rotated-Hyper-Ellipsoid function
(d=20).
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Figure A.12: Normalized loss weights over training for the analytic Rotated-Hyper-Ellipsoid function
(d=20). Starting with equal weights instead of base-weights.

Cubic-Rank-r:

The Cubic-Rank-r function is a low rank cubic model with exponentially decaying weights.

fl@)=) N}, AN=270"1
i=1

Figure A.13: Cubic-Rank-r function (d=2, r=2)

Gradients are quadratic, curvature is confined to the first r standard basis vectors with eigen-
values and ordering dependent on x. The third derivatives are nonzero only in the first r
coordinates.

Inputs are sampled uniformly at random from [—1, 1]. Figure A.14 shows the test-set RMSEs
of all methods over 100 epochs of training (d=20, r=3). The error curves are averaged over
ten random seeds and the standard deviations are shown by shaded areas around the curves.
Due to the low rank structure (r = 3), inclusion of first-, second- and third-order loss terms
leads to steep improvements in sample-efficiency. It can also be observed that the batch-wise
RandSVD method performs better than full Hessian supervision. A potential explanation for
this phenomenon is that when all second-order directions are supervised, the optimization
signal becomes dominated by the requirement to drive many curvature directions toward zero
rather than focusing on accurately fitting the few meaningful non-zero directions.
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Figure A.14: Test-set RMSEs over training for the analytic Cubic-Rank-r function (d=20, r=3).
Curves show mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show
errors in the predicted values and the learned derivatives.
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Rosenbrock:

The Rosenbrock function is a classic test problem with a narrow, curved valley [33].
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Figure A.15: Rosenbrock function (d=2)

Gradients vary strongly with position, the dominant curvature directions rotate along the
valley, and non-zero third derivatives are sparse.

Inputs are sampled uniformly at random from [—1.5,2.5]. Figure A.16 shows the test-set
RMSEs of all methods over 100 epochs of training (d=20). The error curves are averaged
over ten random seeds and the standard deviations are shown by shaded areas around the
curves. It can be observed that the inclusion of first derivatives in the loss leads to improved
sample-efficiency. Second- and third-order supervision yield additional minor benefits in the
accuracies of higher-order derivatives.
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Figure A.16: Test-set RMSEs over training for the analytic Rosenbrock function (d=20). Curves show
mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show errors in the
predicted values and the learned derivatives.
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Ackley:

The Ackley function combines an exponential decay with a cosine average |33].

f(z) = —ae br_eMmeos { g te, 1= \/ﬁ, Meos = & ZCOS (cxy)
(2 1

Figure A.17: Ackley function (d=2, a=20, b=0.2, ¢=27)

Gradients and dominant curvature directions vary strongly with position and third derivatives
are noNzero.

Inputs are sampled uniformly at random from [—5,5]. Figure A.18 shows the test-set RMSEs
of all methods over 100 epochs of training (d=20). The error curves are averaged over ten
random seeds and the standard deviations are shown by shaded areas around the curves.
First- and second-order supervision improves the accuracies of value- and gradient predictions.
However, because of the strongly varying curvature, second- and third derivatives are pretty
much unlearnable for the surrogate.
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Figure A.18: Test-set RMSEs over training for the analytic Ackley function (d=20). Curves show
mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show errors in the
predicted values and the learned derivatives.
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A.5.3 CNN Distillation

A small Convolutional Neural Network (CNN) is trained on the MNIST dataset. The scalar
value of the reference function is taken as the confidence that the trained CNN believes the
given image to represent the digit 9.

More specifically, the images are downsampled by a factor of 0.5 to a resolution of 14 x 14,
so that every input image corresponds to a vector in R'®®. The CNN receives the unflattened
14 x 14 image, applies three convolutional blocks followed by a linear classifier, and outputs
ten logits. The reference value is taken as the logit of the target class (9) minus the logit of
the predicted class (maximum logit value) whenever the prediction differs from the target.
This produces a scalar output that varies smoothly with all input pixels and can therefore be
differentiated efficiently to obtain gradients and higher-order derivatives for Sobolev training.
The CNN itself is trained only once. All subsequent evaluations of the reference function and
its derivatives use this fixed network.

For our evaluations we use a batch size of 128 and 64 batches per epoch. We use k£ = 10 su-
pervision directions, p = 20 oversampling directions, ¢ = 0 power-iteration steps, and r = 30
streaming sketch directions. Adding power-iteration did not impact the results significantly.
Figure A.19 shows the test-set RMSEs of all methods over 150 epochs of training. Interest-
ingly, higher-order derivative supervision does not lead to improved sample-efficiency for value
predictions under this reference model. However, it does lead to improved final accuracies
and significantly better first- and second-order predictions compared to value-only supervi-
sion. Without supervising derivatives of any order, the learned derivatives get worse over the
course of training. As shown in Figure A.20, the learned balancing factors start to diverge
from their base values after 75 epochs, putting less weight on the third-order loss term and
more on the second-order one. This leads to differences in the final test-set RMSEs by:
value error: —0.142  (—38%)

Ist-order error: +0.0427  (+4.3%)

2nd-order error: —0.000787 (—2.2%)

compared to continued training with static base-weights. We do not report metrics on the
learned third derivatives of the surrogate, as a third-order test-set of sufficiently many inputs
exceeded the memory limitations of our system.
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Figure A.19: Test-set RMSEs over training for the CNN-based reference function (d=196). Curves
show mean RMSE across 10 random seeds with shaded +1 standard deviations. Panels show errors
in the predicted values and the learned derivatives.
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A.6 Additional Figures

Figures A.21, A.22 and A.23 visualize how MC approximated training labels become noisier for
higher-order derivatives and how that noise is counteracted by averaging over many simulation
paths. Figure A.24 shows the decaying eigenspectrum of the averaged Hessian for the Heston
model (basket size 7), motivating directional curvature supervision.
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Figure A.21: Analytic test- and training labels for the Bachelier basket call (basket size 7)
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Figure A.22: Simulated training labels for the Bachelier basket call (basket size 7) averaged over 1000
paths
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Figure A.23: Pathwise simulated training labels for the Bachelier basket call (basket size 7)
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Figure A.24: Normalized squared eigenvalues of the mean Hessian of the Heston model (basket size
7). The eigenvalues are sorted in descending order, and the plot shows their normalized squared
magnitudes, illustrating that most curvature is concentrated in the first few eigen-directions.






B Software Documentation

The codebase developed for this thesis is written in Python/JAX [2|. The repository is avail-
able on GitHub at https://github.com/JoWilhelm/diff-ml-rand-svd. It can be installed
in editable mode by cloning the repository and running:

python -m pip install -e
from the top-level directory.

Minimal Training Script:

A minimal example demonstrating a full training run is provided in examples/example.py. The
script sets up a reference model, builds a test set, configures the surrogate MLP, optionally
initializes a streaming sketch object (for the streaming method) and invokes the main training
loop. Because JAX needs explicit state, it also sets up a pseudo-random number generator
(PRNG) key. For each use, it gets split into two so that one key can get passed on.

import jax

from diff_ml.reference_models.bachelier import Bachelier
from diff_ml.nn.train import train

key = jrandom.PRNGKey (42)

# reference function
key, subkey = jrandom.split(key)
basket_dim = 7
n_paths = 100 # number of MC paths per label. Set to O to use analytic
formula.
ref_model = Bachelier (
subkey ,
basket_dim=basket_dim,
weights=jrandom.uniform(subkey, shape=(basket_dim,), minval=1.0,
maxval=10.0),
n_paths_per_label=n_paths
)
test_set = ref_model.get_test_set(n_samples=1024, order=3)

# evaluation parameters
variant = "batchSVD"
k=1

streaming_r = 2
oversampling_p = 1
power_iteration_q = 0

s n_epochs = 100

n_batches_per_epoch = 64
batch_size = 128
lr = 1e-3

# surrogate NN
input_dims = ref_model.n_dims
key, subkey = jax.random.split (key)


https://github.com/JoWilhelm/diff-ml-rand-svd
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mlp = eqx.nn.MLP(key=subkey, in_size=input_dims, out_size="scalar",
width_size=20, depth=3, activation=jax.nn.silu)

5 key, subkey = jax.random.split (key)

mlp = init_linear_weight(mlp, trunc_init, subkey)
surrogate_model = mlp
optim = optax.adam(learning_rate=1r)

# optional streaming sketch object
if variant == "streaming":
key, subkey = jax.random.split (key)
sketch = StreamingHessianSketch(
ref_model=ref_model,
r=streaming_r,
k=k,
key=subkey)
else:
sketch = None

# call the main training loop

trained_surrogate, _, _, _ = train (
surrogate_model ,
test_set,
optim,
n_epochs,

n_batches_per_epoch,
batch_size,

ref_model,

sketch,

variant,

k,

oversampling_p,
power_iteration_q,
learnable_loss_weights=True,
do_approx_metrics=False

)

Overview of the Training Loop:
Inside the train(...) function, the training-PRNG-key of the reference model gets split into
multiple batch-keys. Each iteration, a batch of inputs is sampled and the combined Sobolev
loss is computed by total_loss_fn(...), where loss terms of different orders are computed,
weighted by the balancing mechanism, and combined. After computing the gradients of the
loss w.r.t. the surrogates’ parameters and the learnable uncertainty-weights, the optimizer
applies the update step. The procedure continues for the specified number of iterations. At
the end of each epoch, the current surrogate is evaluated against the test set.
To compute the second-order loss term, the function second_order_loss_fn(...) is called
inside total_loss_fn(...). It first builds a set of supervision directions by either a) choosing
random directions, b) PCA of gradients, c¢) batch-wise RandSVD d) refining the streaming
sketch, or e) using all coordinate directions for full Hessian supervision. In the case of c),
get_rand_SVD_directions(...) in losses/directions.py returns the set of supervision direc-
tions for the batch:
def hvp_power_iterated_sketch(f, x, sketch_directions, q, key):
Y = hvp_batch(f=f,
inputs=x,
directions=sketch_directions,
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batch_key=key

)
Y = jnp.mean(Y, axis=0)
for _ in range(q):
Y, _ = jnp.linalg.qr(Y.T)

key, subkey = jax.random.split (key)
Y = hvp_batch(f=f, inputs=x, directions=Y.T, batch_key=subkey)
Y = jnp.mean(Y, axis=0)

return Y, key

get_rand_SVD_directions (ref_model, f, x, k, key, oversampling_p=0,
power_iteration_q=0, kappa=0.95):

s = k + oversampling_p

key, subkey = jax.random.split (key)

sketch_directions = generate_random_vectors(shape=(s, ref_model.
n_dims), key=subkey, normalize=True)

# sketch with power-iteration

key, subkey = jax.random.split (key)

Y, key = hvp_power_iterated_sketch(
f=f,
X=X,
sketch_directions=sketch_directions,
q=power_iteration_q,
key=subkey

)
Y = Y.T # (4, s)

# orthonormalize Y
Q, _ = jnp.linalg.qr(Y) # (4, s)
# project via HVPs
# each row of B is H @ q_1i
key, subkey = jax.random.split (key)
B_rows = hvp_batch(
f=f,
inputs=x,
directions=Q.T,
batch_key=subkey
)
B_rows = jnp.mean(B_rows, axis=0)

B = jnp.stack(B_rows, axis=0) # (s, d)

# thin SVD on B
U_tilde, S, = jnp.linalg.svd(B, full_matrices=False) # (s, s)

# 1lift back

U= 0Q @ U_tilde

U=U.T # (s, d)

dirs = safe_normalize_vectors (U, axis=-1)
dirs = dirs[:k, :] # truncate (k, d)

return dirs
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Once the dominant curvature directions have been identified, HVPs of the surrogate and the
reference function are compared along these directions. The resulting mean-squared error is
the second-order component of the combined Sobolev loss:

target_hvps = hvp_batch(
f=ref_£fn,
inputs=x,
directions=directions,
batch_key=key
)
pred_hvps = hvp_batch(
f=MakeScalar (model),
inputs=x,
directions=directions

)

second_order_loss = mse(pred_hvps, target_hvps)

Batched HVPs:

The function hvp_batch(...) in ad.py computes HVPs at every point in a batch, into every
provided direction. It is implemented as a nested jax.vmap over both inputs and directions,
optionally passing individual PRNG-keys when the reference function is stochastic:

def hvp(f, x, v, *f_args):
return jax.jvp(lambda x_: eqx.filter_grad(f)(x_, *xf_args), (x,), (
v,)) [1]

def hvp_batch(f, inputs, directions, batch_key=None):
if batch_key is not None:
b = inputs.shape[0] # number of elements in the batch
keys = jax.random.split(batch_key, b)
def hvp_one_point(x, key):
def hvp_v(v):
return hvp(f, x, v, key)
return jax.vmap (hvp_v) (directions) # (k, d)
return jax.vmap (hvp_one_point, in_axes=(0, 0)) (inputs, keys)
# (b, k, d)
else:

Reference Model Interface:

All reference models adhere to a common interface designed to work with the derivative com-
putations in the training pipeline. Each reference model exposes a scalar-valued function that
accepts an input vector and returns the corresponding function value. Stochastic reference
models may additionally accept a PRNG-key as input to ensure reproducible sampling. It
is encouraged, yet not required, that reference models internally apply input/output nor-
malization (mean-centering, unit variance) to stabilize training. In that case, raw inputs
are reconstructed before computing the function value y = f(2yaw) and returning a nor-
malized Ynorm- New reference models can be added by implementing the project’s abstract
ReferenceModel () class and providing the required methods for sampling and evaluation.
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Reproducibility:

To ensure reproducibility of the presented results, a notebook exzamples/rmse_ curves.ipynb is
provided. It produces the presented RMSE-curves by looping over all discussed training meth-
ods. Each training configuration is evaluated over multiple PRNG-keys, and error metrics are
averaged across runs. The figures showing the loss-weights and the scatter plots for the eval-
uation of the Bachelier model can be reproduced in the examples/other _plots.ipynb notebook.

Next Steps:

The current repository could be cleaned up by removing legacy development notebooks and
outdated experiment results, with the goal of having a minimal maintainable codebase. Pack-
aging the project as a proper PyPI module with a comprehensive README.md would make
it easily installable for other researchers. A dedicated tests/ directory should be added with
automated unit tests to verify correctness (for example ensuring that the returned RandSVD
directions are close to the top components of jax.numpy.linalg.svd(jax.hessian()) for
simple functions). Finally, integrating a CI/CD pipeline (via .github/workflows/ci.yml) would
automate testing for each commit, ensuring that future extensions remain reliable.
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